| T | <b>Design</b> | 0 | 0  | - | - |
|---|---------------|---|----|---|---|
|   | W             | K | W, | 2 |   |
|   |               | ~ |    | • |   |

(Pages: 3)

| Name |  |
|------|--|
|      |  |

Reg. No.....

# FIRST SEMESTER B.A./B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CBCSS-UG)

Mathematics

MTS 1C 01—MATHEMATICS—I

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

### Section A

Answer any number of questions.

Each question carries 2 marks.

Maximum Marks 20.

- 1. Find the derivative of  $f(x) = 3x^2 + 8x$  at  $x_0 = -2$  and  $x_0 = \frac{1}{2}$ .
- 2. A rock thrown down from a bridge has fallen  $4t + 4.9t^2$  meter after t seconds. Find its velocity at t = 3.
- 3. Find  $\lim_{x \to \infty} \frac{5x^2 3x + 2}{x^2 + 1}$ .
- 4. Suppose that  $f(t) = \frac{1}{4}t^2 t + 2$  denotes the position of a bus at time t. Find the acceleration.
- 5. A bagel factory produces  $30x 2x^2 2$  dollars worth of bagels for each x worker hours of labour. Find the marginal productivity when 5 worker hours are employed.
- 6. The velocity of a particle moving along a line is 3t + 5 at time t. At time 1, the particle is at position 4. Where is at time 10?
- 7. Use the second derivative test to analyze the critical points of the function  $f(x) = x^3 6x^2 + 10$ .

Turn over

- 8. Find inflection point of the function  $f(x) = x^2 + \frac{1}{x}$ .
- 9. Find  $\lim_{x\to 0^+} x \ln x$ .
- 10. Draw the graph of the step function g on [0,1] defined by  $g(x) = \begin{cases} -2, & \text{if } 0 \le x < \frac{1}{3} \\ 3, & \text{if } \frac{1}{3} \le x \le \frac{3}{4}. \end{cases}$  Compute the signed area of the region between its graph and the x-axis.
- 11. Find the sum of the first n integers.
- 12. Find  $\int_0^4 \left( t^2 + 3t^{\frac{7}{2}} \right) dt$ .

#### Section B

Answer any number of questions.

Each question carries 5 marks.

Maximum Marks 30.

- 13. (a) Differentiate  $\frac{1}{(x^3+3)(x^2+4)}$ .
  - (b) Calculate approximate value for  $\sqrt{8}$  using the linear approximation around  $x_0 = 9$ .
- 14. Find the equation of the tangent line to the curve  $2x^6 + y^4 = 9xy$  at the point (1, 2).
- 15. Water is flowing into a tub at  $3t + \frac{1}{(t+1)^2}$  gallons per minute after t minutes. How much water is in the tub after 2 minutes if it started out empty.
- 16. State mean value theorem. Let  $f(x) = \sqrt{x^3 8}$ . Show that somewhere between 2 and 3 the tangent line to graph of f has slope  $\sqrt{19}$ .

- 17. Find the dimensions of a box of minimum cost if the manufacturing costs are 10 cents per square meter on the bottom, 5 cents per square meter on the sides, and 7 cents per square meter on the top. The volume is to be 2 cubic metres and height is to be 1 metre.
- 18. The region between the graph of  $x^2$  on [0,1] is revolved about the x-axis. Sketch the resulting solid and find its volume.
- 19. Find the area between the graphs of  $y = x^3$  and  $y = 3x^2 2x$  between x = 0 and x = 2.

### Section C

Answer any one question.

Each question carries 10 marks.

Maximum Marks 10.

20. (a) Differentiate 
$$\frac{x^{\frac{1}{2}} + x^{\frac{3}{2}}}{x^{\frac{3}{2}} + 1}$$
.

(b) Find inflection point of the function  $f(x) = x^2 + \frac{1}{x}$ .

21. (a) Find 
$$\lim_{x\to 0} \left( \frac{1}{x \sin x} - \frac{1}{x^2} \right)$$
.

(b) Find average value of  $f(x) = x^2 \sin x^3$  on  $[0, \pi]$ .

Reg. No.....

# FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS—UG)

Complementary Course

MAT 1C 01-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

### Part A (Objective Type)

Answer all twelve questions.

- 1. At what points are function  $f(x) = \frac{1}{(x+2)^2} + 4$  continuous?
- 2. Define critical point of a function.
- 3. Suppose  $\lim_{x\to c} f(x) = 5$  and  $\lim_{x\to c} g(x) = -2$ . Find  $\lim_{x\to c} f(x) g(x)$ .
- 4. Find the norm of the partition [0, 1.2, 1.5, 2.3, 2.6, 3].
- 5. Find absolute minima of  $y = x^2$  on (0, 2].
- 6. Find the interval in which  $y = x^3$  is concave up.

7. 
$$\frac{d}{dx} \int_a^x f(t) dt = ---$$

- 8. Find dy if  $y = x^5 + 37x$ .
- 9. Define average value of a function f on [a, b].
- 10. Find  $\lim_{x\to -\infty} \frac{\pi\sqrt{3}}{x^2}$ .
- 11. Define horizontal asymptote of the graph of a function.
- 12. Find  $\lim_{x\to 2} \frac{3-x}{3+x}$ .

 $(12 \times 1 = 12 \text{ marks})$ 

Turn over

### Part B (Short Answer Type)

Answer any nine questions.

13. If 
$$2-x^2 \le g(x) \le 2\cos x$$
 for all  $x$ , find  $\lim_{x\to 0} g(x)$ .

14. If 
$$\lim_{x\to 4} \frac{f(x)-5}{x-2} = 1$$
, find  $\lim_{x\to 4} f(x)$ .

15. Find the derivative of 
$$y = \sqrt{x}$$
 for  $x > 0$ . Find the tangent line to the curve  $y = \sqrt{x}$  at  $x = 4$ .

- 16. Area A of a circle is related to its diameter by the equation  $A = \frac{\pi}{4} D^2$ . How fast is the area changing with respect to the diameter when the diameter is 10 m?
- 17. Find absolute extreme values of  $g(t) = 8t t^4$  on [-2, 1].
- 18. Show that  $\lim_{x\to -\infty} \frac{1}{x} = 0$ .
- 19. The radius r of a circle increases from  $r_0 = 10 \ m$  to  $10.1 \ m$ . Estimate the increase in the circle's area A by calculating dA. Compare this with true change  $\Delta A$ .
- 20. Find a lower bound for the value of  $\int_0^1 \cos x \, dx$  using the inequality  $\cos x \ge 1 x^2/2$ .
- 21. Use Max-Min inequality to find upper and lower bounds for the value of  $\int_0^1 \frac{1}{1+x^2} dx$ .
- 22. Find the area of the region between  $y = 4 x^2$ ,  $0 \le x \le 3$  and the x-axis.
- 23. Find the function with derivative f'(x) = 2x 1 passing through the point P(0, 0).
- 24. Find  $\frac{d}{dx} \int_0^{t^4} \sqrt{u} \ du$ .

## Part C (Short Essay Type)

Answer any six questions.

- 25. Find the slope of the curve y = 1/x at x = a. Where does the slope equal -1/4? What happens to the tangent to the curve at the point (a, 1/a) as a changes?
- 26. Show that functions with zero derivatives are constant.
- 27. Find the asymptotes of the graph of  $f(x) = \frac{-8}{x^2 4}$ .



- 28. Find  $\lim_{x\to 0} + \frac{\sqrt{h^2 + 4h + 5} \sqrt{5}}{h}$ .
- 29. Show that functions with the same derivative differ by a constant.
- 30. Find the area of the surface generated by revolving the curve  $y = 2\sqrt{x}$ ,  $1 \le x \le 2$  about the x-axis.
- 31. Express the solution of the initial value problem  $\frac{ds}{dt} = f(t)$ ,  $s(t_0) = s_0$  in terms of integral.
- 32. Show that if f is continuous on [a, b],  $a \neq b$  and if  $\int_a^b f(x) dx = 0$ , then f(x) = 0 at least once in [a, b].
- 33. Show that if f has a derivative at x = a then f is continuous at a.

 $(6 \times 5 = 30 \text{ marks})$ 

# Part D (Essay Type)

Answer any two questions.

- 34. Find the intervals on which  $g(x) = -x^3 + 12x + 5$ ,  $-3 \le x \le 3$  is increasing and decreasing. What are the critical points? When does the function assume extreme values and what are these values?
- 35. Find the volume of the solid generated by revolving the regions bounded by the curve  $x = \sqrt{5}y^3$ , x = 0, y = -1, y = 1 about x-axis.

Turn ove

36. Let 
$$f(x) = \begin{cases} 3-x, & x < 2; \\ 2, & x = 2; \\ \frac{x}{2} + 1, & x > 2 \end{cases}$$

- (a) Find  $\lim_{x\to 2^+} f(x)$  and  $\lim_{x\to 2^-} f(x)$ . and f(2).
- (b) Does  $\lim_{x\to 2} f(x)$  exist? If so, what is it? If not, why not?
- (c) Find  $\lim_{x\to -2^+} f(x)$  and  $\lim_{x\to -2^-} f(x)$ .
- (d) Does  $\lim_{x \to -2} f(x)$  exist? If so, what is it? If not, why not?

 $(2 \times 10 = 20 \text{ marks})$